PROG8

 from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn import datasets


# Load dataset

iris = datasets.load_iris()

print("Iris Data set loaded...")


# Split the data into train and test samples

x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.1)

print("Dataset is split into training and testing...")

print("Size of training data and its label", x_train.shape, y_train.shape)

print("Size of testing data and its label", x_test.shape, y_test.shape)


# Prints Label no. and their names

for i in range(len(iris.target_names)):

    print("Label", i, "-", str(iris.target_names[i]))


# Create object of KNN classifier

classifier = KNeighborsClassifier(n_neighbors=12)


# Perform Training

classifier.fit(x_train, y_train)


# Perform testing

y_pred = classifier.predict(x_test)


# Display the results

print("Results of Classification using K-nn with K=12 ")

for r in range(0, len(x_test)):

    print(" Sample:", str(x_test[r]), " Actual-label:", str(y_test[r]), " Predicted-label:", str(y_pred[r]))


print("Classification Accuracy:", classifier.score(x_test, y_test))


Comments

Popular posts from this blog

PROG9

ADDING TABLE IN HTML